

HENTY GOLD MINE, TASMANIA

Extremely high-grade results in multiple areas pave way for imminent Resource update

Results continue to underpin strategy to grow the inventory and production rate to leverage existing infrastructure

Key Points

- Drilling continues to return numerous high-grade intersections of up to 129 g/t
- Importantly, these exceptional intersections have been recorded across multiple zones, providing several areas for Resource growth
- These results will feed into an updated Resource and Reserve estimate set for completion this month
- Exploration is continuing as part of the approved \$7m exploration program for FY23, supporting Catalyst's strategy of growing Resources
- Catalyst aims to increase production at Henty to an annualised rate of 35,000oz by June
 2023
- Results of the latest drilling include:

o 8.7m @ 129.0g/t Au

o 8.5m @ 32.7g/t Au

o 3.3m @ 42.1 g/t Au

o 6.0m @ 14.6g/t Au

o 5.6m @ 12.9g/t Au

o 9.8m @ 6.8g/t Au

Catalyst Metals Limited (**ASX:CYL**) is pleased to announce more strong drilling results which will help underpin the imminent Resource update at its Henty gold mine in Tasmania.

Numerous high-grade intercepts were recorded across the multiple exploration zones targeted.

Recent drilling has involved four underground diamond rigs focusing on Darwin South, Mt Julia, Zone 96, Intermediate Zone and the Cradle Zone¹.

¹ An announcement detailing exploration results from the Cradle Zone was released on 11th August 2022

The exploration results across multiple zones are in line with Catalyst's strategy of increasing the mining inventory at Henty which will in turn help increase production rates, lower unit costs and extend mine life.

The results reported here are for drilling conducted from 1 April 2022 to 30 June 2022 and include drill intercepts from the Cradle Zone which were reported separately on August 11, 2022. These results, in addition to previously reported drilling results, will form part of a Resource update expected to be completed in September 2022.

In addition to the Resource update, Catalyst will complete an updated life-of-mine plan. This is expected to include a greater proportion of the Resource in the mine schedule.

Technical Director Bruce Kay, said: "The strong drilling results continue to show that our strategy is working. We are outlining more high-grade mineralisation and importantly, it is in multiple areas.

"Our Resource update is almost completed and drilling is ongoing with four diamond rigs operating underground.

"This is all in line with our objective of growing the inventory and production rate at Henty while reducing the unit costs".

Highlights of the latest drilling include the below; these intersections are shown on Figures 2, 3 and 4 and included in Appendix 1.

Darwin South			ne 96	Mı	Mt Julia		
0	8.7m @ 129.0g/t Au	0	3.3m @ 42.1 g/t Au	0	5.6m @ 12.9g/t Au		
0	8.5m @ 32.7g/t Au	0	6.0m @ 14.6g/t Au	0	9.8m @ 6.8g/t Au		
0	2.0m @ 58.3 g/t Au	0	4.0m @ 16.6g/t Au	0	1.6m @ 30.9g/t Au		
0	3.0m @ 25.2g/t Au	0	5.2m @ 5.3g/t Au	0	6.6m @ 5.1g/t Au		

HENTY GOLD MINE

The Henty Gold Mine is located 23 kilometres from the town of Queenstown in north western Tasmania, consisting of an underground mine and a nameplate capacity 300,000tpa conventional CIL processing plant.

Catalyst acquired 100% of the Henty Gold Mine and regional exploration tenements, in January 2021. Since acquisition, Catalyst has been pursuing a strategy to increase mining inventory to support higher gold production and lower costs. Catalyst has invested heavily in exploration and is currently undertaking an update in its Reserve and Resource estimates.

In the FY22 June quarter production at Henty was 6,397oz at an AISC of A\$2,100oz. Production for FY22 was 25,199oz and Catalyst is targeting an annualised gold production rate of 35,000oz by the end of FY23.

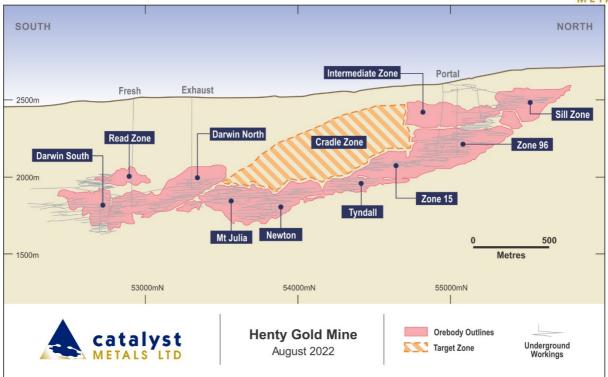


Figure 1: Henty longitudinal projection showing resource outlines and areas of potential at Cradle Zone

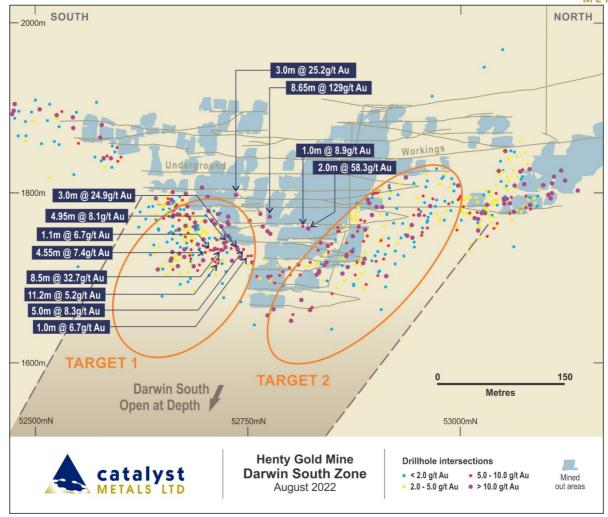


Figure 2: Henty longitudinal projection showing resource outlines and areas of significant intercepts at Darwin South

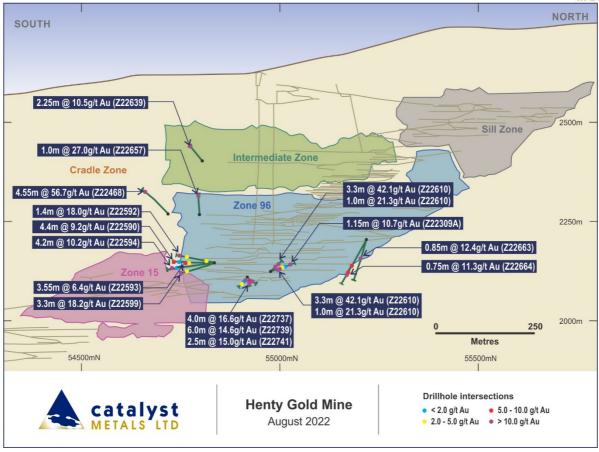


Figure 3: Henty longitudinal projection showing resource outlines and areas of potential at Zone 96 and the Intermediate Zone. Image includes Cradle Zone intercepts reported in announcement on 11 August 2022.

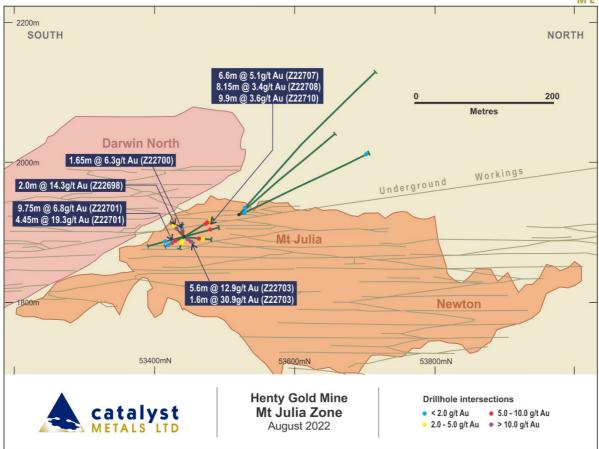


Figure 4: Henty longitudinal projection showing resource outlines and areas of significant intercepts at Mt Julia

This announcement has been approved for release by the Board of Directors of Catalyst Metals Limited.

Investors and Media:

John McKinstry
Chief Executive Officer

James Champion de Crespigny Director

T: +61 (8) 6107 5878 admin@catalystmetals.com.au

Competent person's statement

The information in this report that relates to exploration results is based on information compiled by Henty geological staff and reviewed by Mr Bruce Kay, a Competent Person, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Kay is a non-executive director of the Company and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Mr Kay consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

JORC 2012 Mineral Resource

Catalyst confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

APPENDIX 1: HENTY SUMMARY OF EXPLORATION DRILLING RESULTS

Table 1a: Diamond Drill Hole Collars

Table 1a:	Diamond Dril	l Hole C	ollars				
Hole_ID	Max_Depth	Dip	Local_Azimuth	MAG_Azimuth	Local_East	Local_North	Local_RL
Z21940	145.6	-10.5	266.0	273.6	20089.0	52873.7	1929.1
Z21943	153.0	-9.0	278.5	286.1	20089.1	52874.0	1929.2
Z21944	169.2	-15.5	282.5	290.1	20089.2	52874.1	1929.0
Z21948	80.1	-9.0	296.0	303.6	20089.2	52874.4	1929.2
Z22135	50.4	-32.0	252.5	260.1	19717.1	55219.5	2201.8
Z22136	59.4	-39.5	266.5	274.1	19717.1	55219.9	2201.1
Z22137	53.0	-32.5	267.0	274.6	19717.1	55220.0	2201.3
Z22139	76.0	-49.0	270.5	278.1	19717.1	55220.1	2201.2
Z22143	62.1	-32.5	298.5	306.1	19716.6	55221.1	2200.9
Z22145	64.0	-24.0	305.5	313.1	19716.5	55221.4	2201.2
Z22146	100.1	-32.0	311.5	319.1	19716.5	55221.8	2200.6
Z22147	59.3	-11.0	315.5	323.1	19716.4	55222.2	2201.7
Z22148	89.0	-24.5	318.0	325.6	19716.3	55222.5	2200.8
Z22289	41.1	31.0	280.0	287.6	19731.0	54902.0	2111.0
Z22300	86.5	-29.0	253.0	260.6	19731.0	54901.0	2109.0
Z22302	88.9	-24.0	241.0	248.6	19731.0	54901.0	2109.0
Z22309A	40.2	20.5	311.5	319.1	19732.0	54979.5	2124.8
Z22468	130.9	33.5	235.0	242.6	19839.1	54718.6	2268.8
Z22469	128.0	7.0	248.5	256.1	19838.9	54719.0	2267.9
Z22473	113.4	26.0	266.5	274.1	19838.8	54719.4	2268.5
Z22475	122.4	9.5	271.0	278.6	19838.8	54719.6	2268.0
Z22477	173.1	-36.0	243.0	250.6	19768.5	55407.8	2285.4
Z22478	244.6	-50.5	245.5	253.1	19768.5	55407.8	2285.4
Z22480	161.0	-34.5	259.0	266.6	19768.5	55407.8	2285.4
Z22481	134.3	-23.0	265.5	273.1	19768.5	55407.8	2285.4
Z22482	120.0	-9.5	271.0	278.6	19768.5	55407.8	2285.4
Z22487	153.0	-32.5	280.0	287.6	19768.5	55407.8	2285.4
Z22492	117.1	-0.8	288.0	295.6	19768.5	55407.8	2285.4
Z22493	135.0	-21.0	302.5	310.1	19795.2	55455.8	2424.8
Z22497	100.0	-4.0	253.0	260.6	19795.1	55454.3	2425.4
Z22498	104.5	-11.5	262.5		19795.1	55454.6	2425.2
Z22521	248.0	19.5	318.5	326.1	19890.2	53521.7	1924.2
Z22522	203.0	33.0	320.5	328.1	19890.3	53521.8	1924.7
Z22523	294.0	44.0	329.5	337.1	19890.5	53521.9	1925.1
Z22559	59.6	12.0	251.0	258.6	20082.4	52801.6	1741.4
Z22563	74.3	38.0	229.5	237.1	20083.7	52801.2	1742.4
Z22571A	122.7	-13.5	224.0	231.6	20083.2	52801.1	1739.5
Z22573	151.0	-1.0	202.0	209.6	20084.6	52801.1	1740.9
Z22574	161.0	-7.0	195.0	202.6	20084.6	52801.1	1740.9
Z22575	146.0	-8.5	206.0	213.6	20083.6	52801.1	1739.7
Z22576	146.0	-11.5	219.0	226.6	20083.3	52801.0	1739.6
Z22577	52.8	-9.0	233.0	240.6	20082.9	52801.1	1739.6
Z22580	190.9	-29.0	226.5	234.1	20144.7	52801.3	1791.6
Z22582	254.0	-38.0	221.5	229.1	20143.7	52800.1	1790.4
Z22583	284.5	-43.5	220.5	228.1	20143.7	52800.1	1790.1
Z22584	233.0	-33.0	219.5	227.1	20143.7	52800.1	1790.6
Z22587	249.0	-35.5	208.0	215.6	20144.0	52799.9	1790.5

222590 98.6 1.0 217.5 222.6 19751.5 54835.2 2145.0 222591 96.7 16.5 215.0 222.6 19751.5 54835.2 2145.3 222592 110.6 9.5 210.5 218.1 19751.4 54834.8 2145.3 222593 119.1 0.0 207.0 214.6 19751.4 54834.7 2145.0 222595 111.3 -15.0 213.5 221.1 19751.4 54834.9 2144.5 222595 130.4 -21.5 214.0 221.6 19751.4 54834.9 2144.5 222596 114.5 21.5 205.5 213.1 19751.6 54834.7 2145.7 222596 114.5 21.5 205.5 213.1 19751.6 54834.7 2145.7 222597 125.0 12.5 205.5 213.1 19751.6 54834.7 2145.7 222598 145.0 4.5 198.5 206.1 19751.6 54834.4 2145.2 222599 127.7 -8.0 205.5 213.1 19751.6 54834.4 2145.2 222599 127.7 -8.0 205.5 213.1 19751.6 54834.4 2145.2 222500 22.0 286.0 293.6 19730.0 54981.0 2125.0 222600 30.8 27.0 296.0 303.6 19730.0 54981.0 2125.0 222600 34.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222600 43.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222614 173.0 34.0 233.0 240.6 19870.5 53943.1 1979.6 222637 78.1 21.5 231.5 239.1 19863.4 54755.2 2401.2 222638 595.5 195.5 257.0 264.6 19863.1 54755.2 2401.2 222638 595.5 195.5 257.0 264.6 19863.1 54756.2 2401.2 222640 70.0 17.5 2225.5 234.1 19853.3 54804.7 2401.1 222640 70.0 17.5 226.5 234.1 19853.3 54804.7 2401.1 222640 70.0 17.5 226.5 234.1 19853.3 54804.7 2401.2 222643 74.2 13.5 231.5 231.5 239.1 19861.9 54765.0 2400.4 222643 74.2 13.5 234.5 242.1 19853.3 54804.7 2401.2 222643 74.2 13.5 234.5 242.1 19853.3 54804.7 2401.2 222640 70.0 17.5 226.5 234.1 19853.3 54804.6 2400.2 222643 74.2 13.5 234.5 242.1 19853.3 54805.0 2400.4 222643 74.2 13.5 234.5 242.1 19853.3 54805.0 2400.4 222643 74.2 13.5 230.0 236.5 244.1 19861.9								METALS
222591 96.7 18.5 215.0 222.6 19751.5 54835.2 2145.5 222592 110.6 9.5 210.5 218.1 19751.4 54834.8 2145.5 222594 119.1 0.0 207.0 214.6 19751.4 54834.8 2145.5 222594 111.3 15.0 213.5 221.1 19751.4 54834.9 2144.5 222595 130.4 -21.5 214.0 221.6 19751.4 54834.9 2144.5 222595 130.4 -21.5 205.5 221.6 19751.5 54834.9 2144.3 222596 114.5 21.5 205.5 213.1 19751.6 54834.9 2145.7 222597 125.0 12.5 205.0 212.6 19751.5 54834.4 2145.7 222598 145.0 4.5 198.5 206.1 19751.6 54834.4 2145.7 222599 127.7 -8.0 205.5 213.1 19751.5 54834.4 2145.7 222599 127.7 -8.0 205.5 213.1 19751.5 54834.4 2145.7 222600 29.2 21.0 286.0 293.6 19730.0 54981.0 2125.0 222600 43.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222609 43.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222600 61.2 18.0 327.0 3346.6 19730.0 54981.0 2125.0 222614 173.0 34.0 2233.0 240.6 19870.5 53943.1 1979.6 222635 71.2 45.0 273.0 280.6 19863.0 54757.2 2402.2 222637 78.1 21.5 231.5 239.1 19663.4 54756.2 2401.2 222639 69.6 36.0 236.0 243.6 19863.0 54757.2 2402.2 222637 78.1 21.5 231.5 239.1 19865.4 54756.2 2401.1 222640 70.0 17.5 226.5 224.1 19853.3 54804.7 2401.1 222640 70.0 17.5 226.5 224.1 19853.3 54804.7 2401.1 222647 71.3 49.0 236.5 224.1 19853.3 54804.7 2401.4 222647 74.2 21.0 246.5 254.1 19853.3 54804.7 2401.4 222647 74.2 21.0 246.5 254.1 19853.3 54804.7 2401.4 222647 74.0 13.5 234.5 234.1 19853.3 54804.7 2401.4 222647 74.2 21.5 226.5 224.1 226.5 224.1 226.5 225.5 225.5 226.5 2	Hole_ID	Max_Depth	Dip	Local_Azimuth	MAG_Azimuth	Local_East	Local_North	Local_RL
222592 110.6 9.5 210.5 218.1 19751.4 54834.8 2145.3 222593 119.1 0.0 207.0 214.6 19751.4 54834.7 2145.0 222594 111.3 -15.0 213.5 221.1 19751.4 54834.9 2144.5 222595 130.4 221.5 2214.0 221.6 19751.4 54834.9 2144.5 222596 114.5 21.5 205.5 213.1 19751.6 54834.7 2145.7 222597 125.0 12.5 205.0 212.6 19751.5 54834.7 2145.7 222597 125.0 12.5 205.0 212.6 19751.5 54834.4 2145.7 222598 145.0 4.5 198.5 206.1 19751.6 54834.4 2145.7 222599 127.7 8.0 205.5 213.1 19751.6 54834.4 2145.7 222599 127.7 8.0 205.5 213.1 19751.6 54834.4 2145.7 222590 22.7 2.0 286.0 293.6 19730.0 54981.0 2125.0 222607 30.8 27.0 296.0 303.6 19730.0 54981.0 2125.0 222607 30.8 27.0 296.0 303.6 19730.0 54981.0 2125.0 222610 61.2 18.0 327.0 334.6 19730.0 54981.0 2125.0 222614 173.0 34.0 233.0 240.6 19870.5 53943.1 1979.6 222637 78.1 245.0 273.0 280.6 19863.0 54757.2 240.2 222637 78.1 21.5 231.5 239.1 19863.4 54756.2 2401.2 222639 696.3 60.0 236.0 243.6 19863.4 54756.2 2401.2 222640 70.0 17.5 226.5 234.1 19853.3 54804.3 2400.4 222641 74.0 13.5 234.5 242.1 19853.3 54804.3 2400.4 222643 74.2 13.5 231.5 239.1 19863.4 54756.0 2400.2 222642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 222644 74.0 13.5 234.5 242.1 19853.3 54804.3 2400.4 222644 74.0 13.5 234.5 242.1 19853.3 54804.3 2400.4 222644 74.0 13.5 234.5 242.1 19853.3 54804.3 2400.4 222644 74.0 13.5 234.5 242.1 19853.3 54804.3 2400.4 222649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 222656 118.8 33.0 263.5 247.0 249.6 19827.3 54787.7 2266.9 222656 118.8 33.0 263.5 247.0 249.6 19827.3 54787.7 2266.9 222664 149.7 49.0 246.5 240.0 247.6								
222594 119.1 0.0 207.0 214.6 19751.4 54834.7 2145.0 222594 111.3 -15.0 213.5 221.1 19751.4 54834.9 2144.3 222595 130.4 -21.5 214.0 221.6 19751.6 54834.9 2144.3 222596 114.5 21.5 205.5 213.1 19751.6 54834.7 2145.7 222597 125.0 12.5 205.5 213.1 19751.6 54834.5 2145.7 222598 145.0 4.5 198.5 206.1 19751.5 54834.4 2145.7 222599 127.7 -8.0 205.5 213.1 19751.5 54834.4 2144.7 222605 29.2 21.0 2286.0 293.6 19730.0 54981.0 2125.0 222607 30.8 27.0 296.0 303.6 19730.0 54981.0 2125.0 222609 43.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222610 61.2 18.0 327.0 334.6 19730.0 54981.0 2125.0 222614 173.0 34.0 233.0 240.6 19870.5 53943.1 1979.6 222635 71.2 45.0 273.0 280.6 19863.0 54757.2 240.2 222638 59.5 19.5 231.5 239.1 19863.4 54756.2 2401.2 222639 69.6 36.0 236.0 243.6 19863.1 54756.8 2401.1 222640 70.0 17.5 226.5 234.1 19853.3 54804.4 2400.4 222641 74.0 13.5 234.5 242.1 19853.3 54804.6 2400.2 222642 72.9 21.0 246.5 254.1 19853.3 54804.6 2400.2 222647 77.3 49.0 236.5 244.1 19863.9 54765.0 2400.1 222640 74.2 13.5 231.0 236.5 244.1 19853.3 54804.6 2400.2 222642 72.9 21.0 246.5 254.1 19853.3 54804.6 2400.2 222642 72.9 21.0 246.5 254.1 19853.3 54804.6 2400.2 222642 72.9 21.0 246.5 254.1 19853.3 54804.6 2400.2 222647 77.3 49.0 236.5 244.1 19861.9 54765.0 2400.1 222649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 222640 249.6 19827.3 54787.7 2266.9 222655 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 222656 118.8 33.0 263.5 247.0 249.6 19827.3 54787.7 2266.9 222656 118.8 33.0 263.5 247.0 249.6 19827.3 54787.7 2266.9 222664 149.7 49.5 222.0 230.0 236.6 236.0 236								
222595 130.4 -21.5 214.0 221.6 19751.4 5483.4.9 2144.5 222595 130.4 -21.5 214.0 221.6 19751.4 54834.9 2144.5 222597 125.0 12.5 205.5 213.1 19751.6 54834.7 2145.7 222598 145.0 4.5 198.5 206.1 19751.6 54834.4 2145.7 222598 145.0 4.5 198.5 206.1 19751.6 54834.4 2145.7 222598 145.0 4.5 198.5 206.1 19751.6 54834.4 2145.7 222599 127.7 8.0 205.5 213.1 19751.5 54834.4 2145.7 222605 29.2 21.0 286.0 293.6 19730.0 54981.0 2125.0 222607 30.8 27.0 296.0 303.6 19730.0 54981.0 2125.0 222609 43.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222609 43.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222614 173.0 34.0 233.0 240.6 19870.5 53943.1 1979.6 222613 71.2 45.0 273.0 280.6 19863.0 54757.2 240.2 222637 78.1 21.5 231.5 239.1 19863.4 54756.2 2401.2 222638 59.5 19.5 257.0 264.6 19863.1 54756.8 2401.2 222640 70.0 17.5 2265.5 234.1 19853.3 54804.3 2400.4 222641 74.0 13.5 234.5 242.1 19853.3 54804.3 2400.4 222642 72.9 21.0 246.5 254.1 19853.3 54804.6 2400.2 222643 74.2 13.5 231.5 239.6 19853.2 54805.2 2400.2 222644 74.0 13.5 234.5 242.1 19853.3 54804.6 2400.2 222644 74.0 13.5 234.5 242.1 19853.3 54804.6 2400.2 222644 74.2 13.5 221.0 226.5 254.1 19853.3 54804.6 2400.2 222644 74.2 13.5 232.0 239.6 19827.3 54765.0 2402.1 222649 143.0 2.5 232.0 239.6 19827.3 54765.0 2402.1 222649 143.0 2.5 232.0 239.6 19827.3 54765.0 2402.1 222649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 222655 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 222654 113.2 19.0 249.0 256.5 19827.3 54787.7 2266.9 222656 115.5 25.5 265.0 272.6 199717.1 55220.0 2200.8 222656 115.5 59.5 265.0 272.6 199717.1 55	-							
\$\begin{array}{c c c c c c c c c c c c c c c c c c c								
\$\frac{222596}{222597} 125.0 12.5 205.0 212.6 19751.5 54834.7 2145.7								
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c								
Table								
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	Z22597					19751.5		2145.4
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c	-							
222607 30.8 27.0 296.0 303.6 19730.0 54981.0 2125.0 222609 43.9 16.0 313.0 320.6 19730.0 54981.0 2125.0 222610 612 18.0 327.0 334.6 19730.0 54981.0 2125.0 222614 173.0 34.0 233.0 240.6 19870.5 53943.1 1979.6 222635 71.2 45.0 273.0 280.6 19863.0 54757.2 2402.2 222637 78.1 21.5 231.5 239.1 19863.4 54756.2 2401.2 222639 69.6 36.0 236.0 243.6 19853.2 54804.7 2401.1 222640 70.0 17.5 226.5 234.1 19853.3 54804.3 2400.4 222640 70.0 17.5 226.5 234.1 19853.3 54804.3 2400.4 222642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 222643 74.2 13.5 251.0 258.6 19853.2 54805.0 2400.4 222644 74.0 31.5 251.0 258.6 19853.2 54805.0 2400.2 222646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 222649 143.0 2.5 232.0 239.6 19827.3 54785.0 2402.1 222649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 222652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 222653 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 222655 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 222657 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 222657 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 222657 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 222657 115.3 19.0 249.0 255.6 19827.3 54787.7 2266.9 222656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 222657 109.4 28.0 266.0 273.6 19827.3 54787.7 2266.9 222657 109.4 28.0 266.0 273.6 19827.3 54787.7 2266.9 222657 109.4 28.0 266.0 273.6 19717.1 55220.0 2200.8 222661 122.5 59.5 265.0 222.6 19717.1 55220.0 2200.8 222658 125.5 59.5 265.0 222.6 19717.1 55220.0 2200.8 222662 152.5 59.5 265.0 222.0 239.6 20078.0 52850.0 1751.0 222674 75.6 25.0 252.0 259.6 20078.0 5	-							
Z22609	Z22605							
222610 61.2 18.0 327.0 334.6 19730.0 54981.0 2125.0 222614 173.0 34.0 233.0 240.6 19870.5 53943.1 1979.6 222635 71.2 45.0 273.0 280.6 19863.0 54757.2 2402.2 222637 78.1 21.5 231.5 239.1 19863.4 54756.8 2401.1 222638 59.5 19.5 257.0 264.6 19863.1 54756.8 2401.1 222639 69.6 36.0 236.0 243.6 19853.2 54804.7 2401.1 222640 70.0 17.5 226.5 234.1 19853.3 54804.2 2400.1 222641 74.0 13.5 234.5 242.1 19853.2 54805.0 2400.2 222642 72.9 21.0 246.5 254.1 19853.2 54805.2 2400.4 222643 74.2 13.5 251.0 258.6 19853.2 54805.2	Z22607	30.8	27.0	296.0	303.6	19730.0	54981.0	2125.0
222614 173.0 34.0 233.0 240.6 19870.5 53943.1 1979.6 222635 71.2 45.0 273.0 280.6 19863.0 54757.2 2402.2 222637 78.1 21.5 231.5 239.1 19863.4 54756.2 2401.2 222638 59.5 19.5 257.0 264.6 19863.1 54756.8 2401.1 222640 70.0 17.5 226.5 234.1 19853.2 54804.7 2401.1 222641 74.0 13.5 234.5 242.1 19853.3 54804.3 2400.2 222642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.2 222643 74.2 13.5 251.0 258.6 19853.2 54805.0 2400.2 222643 74.2 13.5 251.0 258.6 19853.2 54805.2 2400.2 222643 74.2 13.5 251.0 258.6 19853.2 54805.2	Z22609	43.9	16.0	313.0	320.6	19730.0	54981.0	2125.0
Z22635 71.2 45.0 273.0 280.6 19863.0 54757.2 2402.2 Z22637 78.1 21.5 231.5 239.1 19863.4 54756.2 2401.1 Z22638 59.5 19.5 257.0 264.6 19863.1 54756.8 240.1 Z22640 70.0 17.5 226.5 234.1 19853.3 54804.3 2400.4 Z22641 74.0 13.5 234.5 242.1 19853.3 54804.6 2400.2 Z22642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 Z22642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 <	Z22610	61.2	18.0	327.0	334.6	19730.0	54981.0	2125.0
222637 78.1 21.5 231.5 239.1 19863.4 54756.2 2401.2 222638 59.5 19.5 257.0 264.6 19863.1 5476.8 2401.1 222639 69.6 36.0 236.0 243.6 19853.2 54804.7 2401.1 222640 70.0 17.5 226.5 234.1 19853.3 54804.3 2400.4 222641 74.0 13.5 234.5 242.1 19853.3 54804.6 2400.2 222642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 222643 74.2 13.5 251.0 258.6 19853.2 54805.0 2400.4 222646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 222647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 222650 128.0 -4.0 240.0 247.6 19827.3 54787.7	Z22614	173.0	34.0	233.0	240.6	19870.5	53943.1	1979.6
Z22638 59.5 19.5 257.0 264.6 19863.1 54756.8 2401.1 Z22639 69.6 36.0 236.0 243.6 19853.2 54804.7 2401.1 Z22641 74.0 13.5 224.5 234.1 19853.3 54804.3 2400.4 Z22642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 Z22643 74.2 13.5 251.0 258.6 19853.2 54805.2 2400.2 Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7	Z22635	71.2	45.0	273.0	280.6	19863.0	54757.2	2402.2
Z22639 69.6 36.0 236.0 243.6 19853.2 54804.7 240.1 Z22640 70.0 17.5 226.5 234.1 19853.3 54804.3 2400.4 Z22641 74.0 13.5 234.5 242.1 19853.3 54804.6 2400.2 Z22642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.2 Z22643 74.2 13.5 251.0 258.6 19853.2 54805.0 2400.2 Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7	Z22637	78.1	21.5	231.5	239.1	19863.4	54756.2	2401.2
Z22640 70.0 17.5 226.5 234.1 19853.3 54804.3 240.0 Z22641 74.0 13.5 234.5 242.1 19853.3 54805.0 2400.2 Z22642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 Z22643 74.2 13.5 251.0 258.6 19853.2 54805.2 2400.2 Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 113.1 19.0 249.0 256.6 19827.3 54787.7	Z22638	59.5	19.5	257.0	264.6	19863.1	54756.8	2401.1
Z22641 74.0 13.5 234.5 242.1 19853.3 54804.6 2400.2 Z22642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 Z22643 74.2 13.5 251.0 258.6 19853.2 54805.2 2400.2 Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7	Z22639	69.6	36.0	236.0	243.6	19853.2	54804.7	2401.1
Z22642 72.9 21.0 246.5 254.1 19853.2 54805.0 2400.4 Z22643 74.2 13.5 251.0 258.6 19853.2 54805.2 2400.2 Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7	Z22640	70.0	17.5	226.5	234.1	19853.3	54804.3	2400.4
Z22643 74.2 13.5 251.0 258.6 19853.2 54805.2 2400.2 Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22650 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7	Z22641	74.0	13.5	234.5	242.1	19853.3	54804.6	2400.2
Z22646 89.9 40.5 212.0 219.6 19861.9 54765.0 2402.1 Z22647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7	Z22642	72.9	21.0	246.5	254.1	19853.2	54805.0	2400.4
T222647 71.3 49.0 236.5 244.1 19861.9 54765.0 2402.1 Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7	Z22643	74.2	13.5	251.0	258.6	19853.2	54805.2	2400.2
Z22649 143.0 2.5 232.0 239.6 19827.3 54787.7 2266.9 Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 5479.7 2266.9 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 <td>Z22646</td> <td>89.9</td> <td>40.5</td> <td>212.0</td> <td>219.6</td> <td>19861.9</td> <td>54765.0</td> <td>2402.1</td>	Z22646	89.9	40.5	212.0	219.6	19861.9	54765.0	2402.1
Z22650 128.0 -4.0 240.0 247.6 19827.3 54787.7 2266.9 Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 5479.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 </td <td>Z22647</td> <td>71.3</td> <td>49.0</td> <td>236.5</td> <td>244.1</td> <td>19861.9</td> <td>54765.0</td> <td>2402.1</td>	Z22647	71.3	49.0	236.5	244.1	19861.9	54765.0	2402.1
Z22651 115.3 27.5 242.0 249.6 19827.3 54787.7 2266.9 Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0	Z22649	143.0	2.5	232.0	239.6	19827.3	54787.7	2266.9
Z22652 125.5 12.0 240.0 247.6 19827.3 54787.7 2266.9 Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.	Z22650	128.0	-4.0	240.0	247.6	19827.3	54787.7	2266.9
Z22653 110.3 35.5 247.0 254.6 19827.3 54787.7 2266.9 Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0<	Z22651	115.3	27.5	242.0	249.6	19827.3	54787.7	2266.9
Z22654 113.2 19.0 249.0 256.6 19827.3 54787.7 2266.9 Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 </td <td>Z22652</td> <td>125.5</td> <td>12.0</td> <td>240.0</td> <td>247.6</td> <td>19827.3</td> <td>54787.7</td> <td>2266.9</td>	Z22652	125.5	12.0	240.0	247.6	19827.3	54787.7	2266.9
Z22655 105.9 40.0 261.5 269.1 19827.3 54787.7 2266.9 Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8	Z22653	110.3	35.5	247.0	254.6	19827.3	54787.7	2266.9
Z22656 118.8 33.0 263.5 271.1 19827.3 54787.7 2266.9 Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0	Z22654	113.2	19.0	249.0	256.6	19827.3	54787.7	2266.9
Z22657 109.4 28.0 266.0 273.6 19828.2 54797.7 2267.5 Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8	Z22655	105.9	40.0	261.5	269.1	19827.3	54787.7	2266.9
Z22661A 127.7 -50.0 282.5 290.1 19717.1 55220.0 2200.8 Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6	Z22656	118.8	33.0	263.5	271.1	19827.3	54787.7	2266.9
Z22662 152.5 -59.5 265.0 272.6 19717.1 55220.0 2200.8 Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1	Z22657	109.4	28.0	266.0	273.6	19828.2	54797.7	2267.5
Z22663 130.4 -51.5 247.5 255.1 19717.1 55220.0 2200.8 Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 <t< td=""><td>Z22661A</td><td>127.7</td><td>-50.0</td><td>282.5</td><td>290.1</td><td>19717.1</td><td>55220.0</td><td>2200.8</td></t<>	Z22661A	127.7	-50.0	282.5	290.1	19717.1	55220.0	2200.8
Z22664 149.7 -49.5 228.5 236.1 19717.1 55220.0 2200.8 Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 <td< td=""><td>Z22662</td><td>152.5</td><td>-59.5</td><td>265.0</td><td>272.6</td><td>19717.1</td><td>55220.0</td><td>2200.8</td></td<>	Z22662	152.5	-59.5	265.0	272.6	19717.1	55220.0	2200.8
Z22672 67.5 6.0 238.0 245.6 20078.0 52850.0 1751.0 Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1	Z22663	130.4	-51.5	247.5	255.1	19717.1	55220.0	2200.8
Z22674 75.6 25.0 252.0 259.6 20078.0 52850.0 1751.0 Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3	Z22664	149.7	-49.5	228.5	236.1	19717.1	55220.0	2200.8
Z22678 17.3 24.0 77.0 84.6 20124.6 52656.8 1785.6 Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3	Z22672	67.5	6.0	238.0	245.6	20078.0	52850.0	1751.0
Z22679 14.0 5.0 73.0 80.6 20124.4 52657.0 1785.2 Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3	Z22674	75.6	25.0	252.0	259.6	20078.0	52850.0	1751.0
Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3	Z22678	17.3	24.0	77.0	84.6	20124.6	52656.8	1785.6
Z22681 21.0 12.0 230.0 237.6 20101.7 52719.8 1783.1 Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3	Z22679	14.0	5.0	73.0	80.6	20124.4	52657.0	1785.2
Z22682 35.4 17.0 230.5 238.1 20088.9 52751.6 1783.2 Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3		 						
Z22683 39.0 23.0 239.5 247.1 20088.7 52752.1 1783.3 Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3								
Z22684 14.0 37.0 234.0 241.6 20060.8 52820.4 1782.4 Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3								
Z22685 29.0 -18.0 247.5 255.1 20077.7 52780.0 1782.1 Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3								
Z22686A 34.2 -18.5 253.0 260.6 20075.1 52786.0 1781.6 Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3								
Z22688 55.8 -1.5 205.5 213.1 20036.7 52877.1 1758.3								
	Z22692	56.3	-2.0	219.0	226.6	20036.4	52877.4	1758.2

Hole_ID	Max_Depth	Dip	Local_Azimuth	MAG_Azimuth	Local_East	Local_North	Local_RL
Z22698	63.8	-11.5	216.5	224.1	19781.5	53440.4	1892.1
Z22700	51.9	-14.0	235.5	243.1	19781.5	53440.4	1892.1
Z22701	41.9	26.0	246.5	254.1	19781.4	53440.4	1893.4
Z22702	47.6	-14.0	265.5	273.1	19781.5	53440.4	1892.1
Z22703	41.0	18.0	265.0	272.6	19781.4	53440.4	1893.4
Z22705	51.2	-6.0	283.5	291.1	19781.3	53443.2	1892.1
Z22707	61.1	-5.0	300.5	308.1	19781.3	53443.2	1892.1
Z22708	46.9	-4.0	315.0	322.6	19781.3	53443.2	1892.1
Z22709	65.4	11.0	315.5	323.1	19781.0	53443.1	1893.5
Z22710	58.0	24.0	315.0	322.6	19781.0	53443.1	1893.5
Z22737	28.0	-20.0	327.0	334.6	19699.0	54917.0	2104.0
Z22738	29.6	-41.0	327.0	334.6	19699.0	54917.0	2104.0
Z22739	25.5	-35.0	299.0	306.6	19699.0	54917.0	2104.0
Z22740	28.1	-49.0	243.0	250.6	19699.0	54916.0	2104.0
Z22741	32.6	-31.0	232.0	239.6	19699.0	54916.0	2104.0
Z22742	43.0	-24.0	211.0	218.6	19699.0	54915.0	2104.0

Table 1b: Diamond Drill Hole Assay results Significant intersections reported and all holes with no significant intersection are reported with maximum down hole assay.

Hole ID Depth Depth Au Ag Cre Zone C							Community
Hole_ID	From	То	Length	g/t	g/t	Ore Zone	Comments
Z21940	140.4	142.4	2	0.1	0	Read Zone	HW
Z21943	145.9	150.9	5	0.1	0	Read Zone	No significant intercepts
Z21944	161.1	161.85	0.75	0	0	Read Zone	No alteration and mineralisation
Z21948	77.4	80.1	2.7	0.2	0	Read Zone	No significant intercepts
Z22135	38.05	43.2	5.15	5.3	0	Zone 96	HW1
Z22136	49.5	51	1.5	4.8	0	Zone 96	HW1
Z22137	40.15	43.5	3.35	2	0	Zone 96	HW1
Z22139	62.55	64.55	2	4.3	0	Zone 96	HW1
Z22143	58.7	60.8	2.1	3.7	0	Zone 96	HW1 - outside of current Z96 wireframe
Z22145	50	51.45	1.45	1.9	0	Zone 96	HW1
Z22146	84	84.8	0.8	0.7	0	Zone 96	HW1 - No significant intercepts
Z22147	45.85	47.85	2	1.8	0	Zone 96	HW1
Z22148	86.5	87	0.5	4	0	Zone 96	HW1
Z22289	35.9	36.8	0.9	26.2	0	Zone 96	FW1
Z22300	35	38	3	2.7	0	Zone 96	FW1
Z22302	61.6	65.8	4.2	1.4	0	Zone 96	HW1
Z22309A	34.3	36.45	2.15	10.7	0	Zone 96	FW1 - includes 0.6m @ 33.34g/t Au
Z22468	107.35	111.9	4.55	56.7	0	Cradle Zone	HW - Includes 1.0m @ 216g/t Au
Z22469	106.3	106.55	0.25	1.8	0	Cradle Zone	HW
Z22473	111.4	112.4	1	1.4	0	Cradle Zone	FW1
Z22475	114.25	116.9	2.65	2	0	Cradle Zone	HW

1 1				i		İ	METALS L
Z22477	138	140	2	0.6	0	Zone 96	No significant intercepts
Z22478	213.8	215.6	1.8	0.1	0	Zone 96	No significant intercepts
Z22480	140.65	143.25	2.6	0	0	Zone 96	HW1 - no significant intercept
Z22481	114.6	115.35	0.75	1.1	0	Zone 96	HW1
Z22482	108.5	109.3	0.8	0.7	0	Zone 96	HW1
Z22487	129.8	132.4	2.6	0	0	Zone 96	HW1
Z22492	103.1	104	0.9	0	0	Zone 96	HW1 - No significant intercepts
Z22493	106.65	107.9	1.25	5.8	0	Sill Zone	HW1
Z22497	82.7	83.8	1.1	0.2	0	Sill Zone	HW - No significant intercepts
Z22498	74.6	76.1	1.5	1.5	0	Sill Zone	HW1
Z22521	244.5	246.05	1.55	0.3	0	Mount Julia	Weak mineralisation
Z22522	6	7.5	1.5	0	0	Mount Julia	No significant intercepts
Z22523	9	9.8	0.8	0	0	Mount Julia	No significant intercepts
Z22559	45.15	52.55	7.4	1.4	0	Darwin South	FW3
Z22563	45.6	54.25	8.65	129	0	Darwin South	FW3 - Includes 0.9m at 1020.0 g/t Au
Z22571A	111.5	122.7	11.2	5.2	0	Darwin South	HW2 - includes 1.0m @ 37.2g/t Au - interval hosted in MZMQ
Z22573	80.05	85	4.95	8.1	0	Darwin South	FW2 - includes 1.0m @ 35.95g/t Au
Z22574	92.25	93.8	1.55	2	0	Darwin Central	FW2
Z22575	112.85	117.4	4.55	7.4	0	Darwin South	HW2 - includes 1.55m @ 18.6g/t Au
Z22576	101	109.5	8.5	32.7	0	Darwin South	HW2 - includes 1.0m @ 209g/t Au
Z22577	51.75	52.3	0.55	0	0	Darwin South	FW3
Z22580	133	138	5	2.3	0	Darwin South	FW2
Z22582	137.4	137.7	0.3	4.5	0	Darwin South	FW1 -large alteration zone
Z22583	239.45	240	0.55	0.4	0	Darwin South	FW1 - no significant intercept
Z22584	177	178	1	3.3	0	Darwin South	HW2
Z22587	139	144.5	5.5	1.1	0	Darwin South	FW - outside of current wireframes?
Z22590	93.6	98	4.4	9.2	0	Cradle Zone	HW1 - includes 2.0m @ 16.19g/t Au
Z22591	95.5	96.7	1.2	2.5	0	Cradle Zone	HW1
Z22592	106.6	108	1.4	18	0	Cradle Zone	HW1 - Including 0.4m @ 33.4 g/t Au
Z22593	115.55	119.1	3.55	6.4	0	Cradle Zone	HW1 - Including 1.0m @ 18.05 g/t Au
Z22594	105	109.2	4.2	10.2	0	Cradle Zone	HW1 - Including 0.2m @ 41.0 g/t Au
Z22595	126	128.5	2.5	4.1	0	Cradle Zone	HW
Z22596	104	105	1	9.6	0	Cradle Zone	FW1
Z22597	121	124	3	0.1	0	Cradle Zone	HW1?
Z22598	33	34	1	14.9	0	Cradle Zone	FW - outside of current wireframes
Z22599	120.9	124.2	3.3	18.2	0	Cradle Zone	HW1
Z22605	28	29.2	1.2	2.4	0	Zone 96	FW1
Z22607	20.1	20.65	0.55	16.1	0	Zone 96	FW3
Z22609	25.9	26.5	0.6	33.5	0	Zone 96	FW3
Z22610	55	58.3	3.3	42.1	0	Zone 96	HW1 - includes 0.8m @ 165g/t Au

							METALS L
Z22614	172.5	172.8	0.3	0.2	0	Mount Julia	No significant intercepts
Z22635	62.6	64.5	1.9	9.5	0	Cradle Zone	HW2 - Including 0.5m @ 25.4 g/t Au
Z22637	60.7	61.2	0.5	2.5	0	Cradle Zone	FW2
Z22638	51.4	54.9	3.5	5.6	0	Cradle Zone	HW2
Z22639	66.75	69	2.25	10.5	0	Intermediate Zone	HW2
Z22640	47.9	49.2	1.3	4.1	0	Cradle Zone	FW2
Z22641	43.2	45	1.8	2.7	0	Cradle Zone	FW2
Z22642	69.2	71	1.8	3.6	0	Cradle Zone	HW2
Z22643	71.5	73.05	1.55	5.2	0	Intermediate Zone	HW2
Z22646	71.7	73	1.3	3.1	0	Cradle Zone	HW2
Z22647	62.55	66.8	4.25	3.6	0	Cradle Zone	HW2
Z22649	119.9	121.9	2	3.7	0	Zone 96	Hosted in MZMZ/MPYR
Z22650	64.9	65.75	0.85	4.6	0	Zone 96	FW - outside of current wireframes
Z22651	109.9	111.8	1.9	2	0	Zone 96	FW1
Z22652	117.4	120	2.6	2.8	0	Zone 96	FW1?
Z22653	107	108	1	0.8	0	Zone 96	HW
Z22654	105.7	107.1	1.4	4.4	0	Zone 96	HW1?
Z22655	70.1	71	0.9	0.7	0	Zone 96	FW - No significant intercepts
Z22656	103.25	104	0.75	0.2	0	Zone 96	FW1
Z22657	106	107	1	27	0	Zone 96	FW1
Z22661A	58.75	60.6	1.85	3	0	Zone 96	FW1
Z22662	135.3	136.2	0.7	5.7	0	Zone 96	HW1
Z22663	57.95	58.8	0.85	12.4	0	Zone 96	FW1 - outside of existing wireframes
Z22664	111.75	112.5	0.75	11.3	0	Zone 96	HW - outside of current wireframes
Z22672	51.95	53.95	2	58.3	0	Darwin South	FW - Includes 1.0m @ 113 g/t Au
Z22674	56	59.55	3.55	2.1	0	Darwin South	FW3
Z22678	15.5	17.3	1.8	3.1	0	Darwin South	Outside of current wireframes
Z22679	3.55	10	6.45	0.5	0	Darwin South	FW2
Z22681	13.45	21	7.35	3.4	0	Darwin South	FW2
Z22682	27.15	30.35	3.2	3.3	0	Darwin South	FW2
Z22683	33	36.5	3	25.2	0	Darwin South	FW1 - includes 0.3m @ 100g/t Au
Z22684	10.4	13.15	2.75	0.3	0	Darwin South	FW3
Z22685	30.3	31.3	1	1.2	0	Darwin South	FW2 - no significant intercepts
Z22686A	29.45	31.7	2.25	3.6	0	Darwin South	FW3
Z22688	39.25	42.3	3.05	0.5	0	Darwin South	FW3
Z22692	52.7	53.05	0.35	1	0	Darwin South	FW3
Z22698	30.95	32.95	2	14.3	0	Mount Julia	FW1
Z22700	27.9	34	6.1	3.3	0	Mount Julia	FW1
Z22701	30.65	36	4.45	19.3	0	Mount Julia	HW2 - includes 0.8m @ 72.9g/t Au
	37	41.25	4.25	5.4	0	Mount Julia	HW2

Z22703	20.4	26	5.6	12.9	0	Mount Julia	FW1 - includes 1.8m @ 27.3g/t Au
Z22705	24.9	32	7.1	4.2	0	Mount Julia	FW1
Z22707	35	41.6	6.6	5.1	0	Mount Julia	FW1
Z22708	24.55	32.7	8.15	3.4	0	Mount Julia	FW
Z22709	45	51.5	6.3	2	0	Mount Julia	FW1
Z22710	41	52.5	9.9	3.6	0	Mount Julia	FW1 - includes 0.6m @ 22.4g/t Au
Z22737	16	20	4	16.6	0	Zone 96	HW1
Z22738	3.6	4.65	1.05	6.5	0	Zone 96	FW1
Z22739	12	18	6	14.6	0	Zone 96	HW1 - includes 1.0m @ 61.4g/t Au
Z22740	3.4	7	3.6	5	0	Zone 96	FW1
Z22741	1.5	4	2.5	15	0	Zone 96	FW1 - includes 0.6m @ 48g/t Au
Z22742	6	9	3	2.4	0	Zone 96	FW

JORC 2012 Edition, Table 1 Checklist: Diamond Drilling

Diamond Drill Sampling Techniques and Data	
Criteria	Explanation
Sampling techniques	The sampling database for this Henty exploration program includes only data
Sampling techniques	collected by diamond drilling (DD).
	The previous sampling database has been compiled from information collected when
	the project was under ownership of numerous companies including (listed from most
	recent):
	Diversified Minerals (2016 to 2020)
	Unity Mining (2009 to 2016)
	Barrick Gold (2006 to 2009)
	Placer Dome (2003 to 2006)
	Aurion Gold (2001 to 2003)
	RGC/Goldfields (1996 to 2001).
	Details relating to drilling techniques, quality assurance (QA) protocols and quality
	control (QC) results for data gathered prior to 2009 is largely unavailable. Drilling
	carried out during this period is collectively termed "Historical Drilling" herein. For
3	drilling carried out since acquisition of the project by Unity Mining in 2009 a
	reasonable, although partially incomplete, level of information is typically available
	describing data collection procedures and relevant QAQC. Drilling carried out
	during this period is collectively termed "Modern Drilling" herein.
	For drillhole data, either whole core or half core is generally submitted. In areas
	where infill drilling is required, whole core is typically submitted given that there are
	other holes available with half core for future reference. Samples are taken at 0.2–1
	m intervals and honour different rock types, alteration zones and mineralised zones
	as defined by geologists.
	Diamond drilling methods were used to obtain 0.2 m to 1 m length samples which
	were subsequently pulverised to produce a 30 g charge for fire assay with
	determination by atomic absorption spectrometry (FA/AAS) for gold.
Drilling techniques	Underground mobile diamond drill rigs are utilised to produce either LTK60 or NQ2
	size core. Drill core is not routinely oriented.
Drill sample recovery	Drilling recoveries are recorded for diamond core samples as part of geotechnical
	logging.
	Recovery of drill core is maximised by using drilling techniques and drilling fluids
	suited to the particular ground conditions.
	No relationship between grade and recovery has been identified.
Logging	For drillhole data, logging is completed on a lap top computer directly into an Excel
	based spreadsheet which has been designed for the mine site. Logging is carried out
4	at a core shed with adequate facilities including roller-racks, lighting, core
	photograph facilities and an automatic core saw.
	A template with project-specific codes has been set up to ensure consistent collection
	of relevant geological information. Alteration, geotechnical, structure and rock type
	information are collected into separate tables using standalone codes.
	Zones of core loss are also recorded.
	Logging is generally qualitative in nature. All core is stored at site and has been
	photographed wet.
	All diamond core has been geologically logged in full (100%).

-		METALS LT
	Diamond Drill Sampling	
	Techniques and Data	
L	Criteria	Explanation
	Sub-sampling techniques and	Diamond drill core samples are generally half-core, with core sawn in half using a
	sample preparation	core-saw. In areas where infill drilling is required, whole core may be submitted
		given that there are other holes available with half core for future reference. An
4		automatic core saw is used to cut the core.
4		Several laboratories and assay techniques have been used throughout the Project's
		history. Typically, samples are initially crushed in a jaw crusher to a size of 10 mm.
1		The jaw crusher is cleaned by compressed air between samples. The sample is then
V		riffle split down to 1 kg, with the remaining samples returned as coarse reject to site
/		and stored under cover for future reference. The 1 kg sample is pulverised using an
		LM5 pulveriser to a size of 85% passing 75 microns, and the mill cleaned with a
		barren silica flush between samples. 200 g of this fine material is taken via scoop,
V		from which 30 g is taken for fire assay (FA50).
		Subsampling is performed during the sample preparation stage according to the assay
		laboratories' internal protocols.
		Field duplicates of diamond core, i.e. other than half of cut core, have not been
4		routinely assayed.
7		Sample sizes are considered appropriate for the material being sampled
	Quality of assay data and	The techniques are considered total.
	laboratory tests	All samples are currently submitted to ALS Burnie for gold analysis. Samples are
		crushed and pulverised prior to selection of a 30 g subsample for fire assay with
		determination by atomic absorption spectrometry (AAS). Previous owners have
1		adopted similar methods.
		Occasionally, Bi, Ag, Cu, Pb, Zn, As and Mo analyses are completed to assist with
4		understanding the nature of the mineralisation and for metallurgical assessment. Cu,
-		for example, may consume cyanide during processing. If required, pulps are sent
-		from Burnie to ALS Townsville for determination via ICP analysis.
		Details relating QA protocols and QC results for data gathered prior to 2009 is
		largely unavailable.
4		Monthly QC reports were compiled by Unity Mining for the period 2010 to 2015. The available QC data compiled by Unity Mining has been reviewed by CSA Global
V		and considers the results as suitable to support the data gathered during this time
		period.
		QA protocols that have been adopted since 2016 are summarised below.
		Drilling
		DVM specifies inclusion of field blanks at a rate of one blank every 30 samples
		submitted. The blanks are composed of barren basalt material, which is obtained
1		from a commercial distributor in the town of Devonport on the north coast of
V		Tasmania.
4		DVM specifies inclusion of certified reference materials (CRMs) at a rate of two
İ		CRM's every 30 samples of core samples submitted. Commercially available CRM's
		covering ranges considered as representing low, moderate and high values for gold
1		were obtained from OREAS.
		Inclusion of field duplicates for core samples is not routinely carried out by DVM.
		Pulp duplicates insertion rates are not specified by DVM. Assay laboratory internal
4		QA protocols are relied upon for analysis of pulp duplicates.
L		4 F me remed about for analysis of bath aubitement

Diamond Drill Sampling Techniques and Data	METALS
Criteria	Explanation
Verification of sampling and	Significant intersections have been verified by alternative DVM company personnel.
assaying	No twinning has been completed.
7 , 5	The summary below relates to current methods. Historical methods are not known
	with any certainty.
	Drilling
	Logging is completed on a lap top computer directly into an Excel based spreadsheet
	which has been designed for the mine site. Logging is carried out at a core shed with
	adequate facilities including roller-racks, lighting, core photograph facilities and an automatic core saw. A template with project-specific codes has been set up to ensure
	consistent collection of relevant geological information. Alteration, geotechnical,
	structure and rock type information are collected into separate tables using
	standalone codes.
	Core is photographed wet at the core shed. Core photographs are stored on the server
	for future reference.
	The summary below relates to current methods. Historical methods are not known
	with any certainty; however, the Competent Person considers it is reasonable to
	assume that industry standard techniques have been adopted over the Projects history.
	Diamond drillhole collar positions are set out by mine surveyors. The drilling crew
	has an azi-reader device that enables them to set up at the correct azimuth and dip
	according to the drillhole plan. Final collar positions are then picked up by Mine
	Surveyors at hole completion. Downhole surveys are completed using a Devi-flex
	tool, with surveys taken every few metres.
	The grid system used is Geocentric Datum of Australia 1994 (GDA94) but the Henty
	Mine uses a local grid system which is used in the reporting of drill collars and intersections in Appendix 2.
	The mine surveyors have conversion tables for the conversion of local coordinates
	and RL to the MGA94. Below are conversions from local grid to MGA94 for two
	points in the mine. There is no standard transformation conversion because mine
	grid is oriented at an angle to grid north.
	Local mine grid
	Point 1 N 57102.049 E 21513.529 RL = AHD + 2000
	Point 2 N 51318.276 E 21509.850 RL =AHD + 2000 MGA94
	Point 1 N 5365490.570 E 382559.064
	Point 2 N 5360057.736 E 380580.385
Data spacing and distribution	Areas that remain in situ are generally drilled at 10–20 m E by 10–20 m RL spacings
	in the Mineral Resource area. The drill spacing varies between deposits, and lenses
	within a deposit. Areas towards the periphery of the lenses are often drilled at
	broader spacings.
O instation of late in sulation to	Compositing was not applied at the sampling stage.
Orientation of data in relation to geological structure	The drilling has been undertaken at various orientations, given the limited platforms available underground. For the most part, holes are drilled at a high angle to the
geological structure	mineralisation. Some holes, however, have been drilled close to sub-parallel to the
	mineralisation.
	The relationship between the drilling orientation and the orientation of key
	mineralised structures is not considered to have introduced a sampling bias.
Sample security	The summary below relates to current methods. Historical methods are not known
	with any certainty; however, the Competent Person considers it is reasonable to
	assume that industry standard techniques have been adopted over the Projects
	history. Core is transported to the core shed for processing, which is locked at the end of each
	day. Core samples are placed in a polyweave sack for transportation to the
	laboratory.
	The primary laboratory (ALS in Burnie) collects the samples each morning.

Diamond Drill Sampling Techniques and Data Criteria	Explanation
Audits or reviews	No processes or data used in developing the release of exploration results have been subject to audit or review by non-company personnel or contractors so as to reduce costs and timelines for reporting. Catalyst Metals Limited has relied on information from Competent Persons at CSA Global and Henty Mine CSA Global completed a review of data collection techniques in 2017

1	Reporting of Exploration Results	
	Criteria	Explanation
	Mineral tenement and land tenure	Henty Gold Mine Tenements in Tasmania are owned by Unity Mining Pty Ltd
Ŋ	status	Land tenure consists of three Mine Leases, 7M/1991, 5M/2002 and 7M/2006. Two
		Exploration Licences adjoin the Mine Leases; EL 8/2009 to the north and east and
		EL 28/2001 to the south.
		The tenements are in good standing and no known impediments exist.
Z	Exploration done by other parties	Other companies to have held the project leases include:
		Unity Mining (2009 to 2016)
		Barrick Gold (2006 to 2009)
		Placer Dome (2003 to 2006)
		Aurion Gold (2001 to 2003)
1		RGC/Goldfields (1996 to 2001)
	Geology	The Henty deposit lies within the Mt Read Volcanic (MRV) Belt in western
		Tasmania. The belt hosts several world-class polymetallic ore bodies including the
		Hellyer, Que River, Rosebery, Hercules and Mount Lyell deposits. The whole belt
_		has been overprinted with a regional lower green schist facies metamorphism.
		Mineralisation consists of a series of small high-grade lenses of gold mineralisation
		hosted in quartz-sericite altered volcaniclastic and volcanic rocks that occupy a large
		sub-vertical quartz-sericite alteration shear zone. Gold is present as both free gold
		and as gold-rich electrum associated with chalcopyrite and galena in the main
		mineralised zone.
	Drill hole Information	All exploration results reported here are from diamond drilling (DD) subsequent to 1
		July 2020 which was the cut-off date for the CSA resource estimation summarised in
		Appendix 1.
		The historic sampling database has been compiled from information collected when
		the project was under ownership of numerous companies including (listed from most
		recent):
		Diversified Minerals (2016 to 2020)
		Unity Mining (2009 to 2016)
		Barrick Gold (2006 to 2009)
		Placer Dome (2003 to 2006)
		Aurion Gold (2001 to 2003)
		RGC/Goldfields (1996 to 2001).
7		Details relating to drilling techniques, quality assurance (QA) protocols and quality
		control (QC) results for data gathered prior to 2009 is largely unavailable. Drilling
		carried out during this period is collectively termed "Historical Drilling" herein. For
		drilling carried out since acquisition of the project by Unity Mining in 2009 a
		reasonable, although partially incomplete, level of information is typically available
		describing data collection procedures and relevant QAQC. Drilling carried out during
		this period is collectively termed "Modern Drilling" herein.

Data aggregation methods DDH assay samples are collected at 1m intervals in the first instance, but smaller intervals are sampled where related to specific mineralised units. No top-cutting applied to assay data. Significant intersections in first-pass exploration are usually reported as those with assays in excess of 0.5g/t Au (with internal dilution of two consecutive assays or les Reported zones are continuous, with no sample or assay gaps. Holes without zones of significance are tabulated detailing the greatest assay value achieved. The dip of mineralisation is expected to be steep west dipping, but drill hole azimuths are variable due to lack of availability of underground drill platforms. The dip of mineralisation is not always consistent or known and the true width of mineralisation has not been resolved. As such, significant mineralised intersections have been reported as downhole intervals. Diagrams Figure 1 shows the longitudinal projection of the Henty resource and mining area for the January to March 2022 drilling. Figures 2 shows the enlargement diagram with diamond drill holes in longitudinal projection for the Darwin Zone. Balanced reporting All drilling inclusive of holes which did not contain significant intersections are included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report. Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond	Data aggregation methods DDH assay samples are collected at 1m intervals in the first instance, but smaller intervals are sampled where related to specific mineralised units. No top-cutting applied to assay data. Significant intersections in first-pass exploration are usually reported as those with assays in excess of 0.5g/t Au (with internal dilution of two consecutive assays or les Reported zones are continuous, with no sample or assay gaps. Holes without zones of significance are tabulated detailing the greatest assay value achieved. Relationship between mineralisation widths and intercept lengths The dip of mineralisation is expected to be steep west dipping, but drill hole azimuths are variable due to lack of availability of underground drill platforms. The dip of mineralisation is not always consistent or known and the true width of mineralisation has not been resolved. As such, significant mineralised intersections have been reported as downhole intervals. Diagrams Figure 1 shows the longitudinal projection of the Henty resource and mining area for the January to March 2022 drilling. Figures 2 shows the enlargement diagram with diamond drill holes in longitudinal projection for the Darwin Zone. All drilling inclusive of holes which did not contain significant intersections are included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report.	Reporting of Exploration Results Criteria	Explanation
mineralisation widths and intercept lengths azimuths are variable due to lack of availability of underground drill platforms. The dip of mineralisation is not always consistent or known and the true width of mineralisation has not been resolved. As such, significant mineralised intersections have been reported as downhole intervals. Diagrams Figure 1 shows the longitudinal projection of the Henty resource and mining area for the January to March 2022 drilling. Figures 2 shows the enlargement diagram with diamond drill holes in longitudinal projection for the Darwin Zone. All drilling inclusive of holes which did not contain significant intersections are included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report. Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond	mineralisation widths and intercept lengths azimuths are variable due to lack of availability of underground drill platforms. The dip of mineralisation is not always consistent or known and the true width of mineralisation has not been resolved. As such, significant mineralised intersections have been reported as downhole intervals. Diagrams Figure 1 shows the longitudinal projection of the Henty resource and mining area for the January to March 2022 drilling. Figures 2 shows the enlargement diagram with diamond drill holes in longitudinal projection for the Darwin Zone. All drilling inclusive of holes which did not contain significant intersections are included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report. Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond		DDH assay samples are collected at 1m intervals in the first instance, but smaller intervals are sampled where related to specific mineralised units. No top-cutting applied to assay data. Significant intersections in first-pass exploration are usually reported as those with assays in excess of 0.5g/t Au (with internal dilution of two consecutive assays or less Reported zones are continuous, with no sample or assay gaps. Holes without zones of significance are tabulated detailing the greatest assay value
the January to March 2022 drilling. Figures 2 shows the enlargement diagram with diamond drill holes in longitudinal projection for the Darwin Zone. Balanced reporting All drilling inclusive of holes which did not contain significant intersections are included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report. Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond	the January to March 2022 drilling. Figures 2 shows the enlargement diagram with diamond drill holes in longitudinal projection for the Darwin Zone. Balanced reporting All drilling inclusive of holes which did not contain significant intersections are included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report. Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond	mineralisation widths and intercept	azimuths are variable due to lack of availability of underground drill platforms. The dip of mineralisation is not always consistent or known and the true width of mineralisation has not been resolved. As such, significant mineralised intersections
included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report. Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond	included in Tables 1a and 1b Other substantive exploration data Other exploration results that have been used in the CSA resource estimation have not been included in this report. Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond	Diagrams	
Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond	Further work Further drilling at Henty will continue to be focussed on the mine corridor adjacent or parallel to the known resource and will also test specific structural targets beyond		included in Tables 1a and 1b
or parallel to the known resource and will also test specific structural targets beyond	or parallel to the known resource and will also test specific structural targets beyond	Other substantive exploration data	
		Further work	or parallel to the known resource and will also test specific structural targets beyond